مقایسه ی شبکه ی عصبی مصنوعی با رگرسیون لجستیک در پیش بینی اختلالات روانی بعد از تروما در بیماران دچار آسیب مغزی خفیف

نویسندگان

  • آرش نادمی 2- استادیار، گروه آمار، دانشگاه آزاد اسلامی واحد ایلام ، ایلام، ایران
  • اسماعیل فخاریان استاد تمام،مرکزتحقیقاتتروما،دانشگاه علوم پزشکی کاشان، کاشان، ایران
  • الهام شفیعی دکتری تخصصی پژوهشی اپیدمیولوژی، مرکز تحقیقات پیشگیری از آسیب های روانی- اجتماعی، دانشگاه علوم پزشکی ایلام، ایلام، ایران
  • عبدالله امیدی مدیرگروه روان شناسی بالینی و عضو هیئت علمی دانشگاه علوم پزشکی کاشان
چکیده مقاله:

هرچند آسیب مغزی شدید می­تواند افراد را مستعد ابتلا به اختلال روانی کند، در مورد آسیب تروماتیک مغزی خفیف هنوز جای بحث و بررسی وجود دارد. هدف این پژوهش مقایسه ی قدرت شبکه عصبی مصنوعی در پیش­بینی بروز اختلال روانی بعد از تروما در بیماران دچار آسیب مغزی خفیف با رگرسیون لجستیک بود. برای این منظور در یک مطالعه کوهورت آینده نگر، 100 نفر بیمار ترومایی ارجاع شده به مرکز ترومای بیمارستان شهید بهشتی کاشان طی مدت 6 ماه بررسی و با 100 نفر از افراد سالم مقایسه شدند. برای مدل سازی، داده ها به طور تصادفی به دو گروه آموزشی (100 نفر) و آزمایشی (100 نفر) تقسیم شد و برای تخمین قدرت پیش­بینی اختلال روانی از منحنی راک و صحت کلاسبندی استفاده شد. نتایج نشان داد، بین دو گروه بیماران تروماتیک خفیف و افراد سالم از نظر اختلالات روانی تفاوت معنی­داری وجود دارد و مدلهای شبکه ی عصبی مصنوعی نسبت به مدلهای رگرسیون لجستیک کارایی بهتری نشان می دهند. این پژوهش نشان داد که برای پیش بینی اختلال روانی بایستی شاخص های تشخیص این فاکتور در ابتدای کار از بیماران ترومای مغزی خفیف سنجیده گردیده و سپس به کمک مدل شبکه ی عصبی مصنوعی، به پیش­بینی این فاکتور پرداخته شود. لزوم استفاده از این فناوری در موارد غربالگری جمعیتی نتایج مفیدی را در درمان بیماران ترومایی و جلوگیری از بروز مشکلات احتمالی برای اینگونه بیماران دارد.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

استفاده از شبکه عصبی مصنوعی و مقایسه آن با رگرسیون لجستیک در پیش‌ بینی اختلالات روانی بعد از تروما در بیماران دچار آسیب مغزی خفیف

مقدمه: امروزه شبکه ­های عصبی مصنوعی در پیش ­بینی اثرات متغیرهای متعدد و با روابط پیچیده بر روی یک متغیر خاص مورد توجه قرار گرفته است. در این مطالعه، قدرت شبکه عصبی مصنوعی در پیش­ بینی اختلالات روانی بعد از تروما در بیماران دچار آسیب مغزی خفیف با رگرسیون لجستیک مقایسه شد. مواد و روش ­ها: در یک مطالعه کوهورت آینده نگر، 100 نفر بیمار ترومایی ارجاع شده به مرکز ترومای بیمارستان شهید بهشتی کاشان طی م...

متن کامل

بررسی فاکتورهای موثر بر پیش بینی اختلال روانی در بیماران تروماتیک مغزی خفیف با استفاده از مدل رگرسیون لجستیک

مقدمه: آسیب مغزی شدید می تواند افراد را مستعد ابتلاء به اختلال روانی نماید. اما در مورد آسیب تروماتیک مغزی خفیف هنوز جای بحث و بررسی وجود دارد. اهداف این پژوهش پیش بینی عوامل خطرزای اختلال روانی پس از وقوع آسیب مغزی تروماتیک خفیف می باشد. مواد و روش ها: این مطالعه کوهورت آینده نگر،  بر روی 72 بیمار مبتلا به MTBI و 72 نفر فرد سالم انجام شد. پس از گذشت 6 ماه پیگیری، افراد جهت ارزیابی آزمون حافظه ...

متن کامل

مقایسه قدرت پیش بینی شبکه عصبی مصنوعی با رگرسیون لجستیک چندگانه در تفکیک بیماران دیابتی رتینوپاتی از غیر رتینوپاتی

 Background: Diabetes mellitus is a high prevalent disease among the population, and if not controlled, it causes complications and irreparable damage to the eye and cause blindness. This study goal is to investigate the predictive power of multiple logistic regression model and the Artificial Neural Network Multi-layer Perceptron (MLP) in determining patients with and without diabetic...

متن کامل

مقایسه ی کارایی شبکه ی عصبی مصنوعی با رگرسیون لجستیک در پیش بینی میزان ریزش دانشجویان

مدل رگرسیون لجستیک یکی از مهم ترین مدل های خطی تعمیم یافته است که برای تحلیل مدل های چند متغیره کاربرد دارد به طوری که تمامی عوامل پیش بینی کننده موجود در یک مساله را به طور همزمان مورد توجه قرار می دهد. این مدل برای پیش بینی مدل های خطی و غیرخطی مناسب هستنداز سوی دیگر شبکه های عصبی به دلیل قابلیت های منحصر به فردشان ابزار بسیار کارایی برای پیش بینی می باشند. این مدل ها از اطلاعات پیشین استفاده...

15 صفحه اول

مقایسه قدرت پیش بینی شبکه عصبی مصنوعی با رگرسیون لجستیک چندگانه در تفکیک بیماران دیابتی رتینوپاتی از غیر رتینوپاتی

زمینه و هدف: بیماری دیابت شیوع بالایی در جامعه دارد و در صورت عدم کنترل، دارای عوارض جبران ناپذیری است و باعث آسیب زدن به چشم و نابینایی می شود. هدف این مطالعه مقایسه کارایی و قدرت پیش بینی مدل آماری رگرسیون لجستیک چندگانه با مدل شبکه عصبی مصنوعی پرسپترون چندلایه(mlp)  در تفکیک بیماران دیابتی دارای رتینوپاتی از دیابتی بدون رتینوپاتی است.  روش کار: نمونه ها از بین 16000 پرونده بیماران دیابتی مرک...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 12  شماره 46

صفحات  37- 46

تاریخ انتشار 2017-12-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023